SLOVENSKI STANDARD SIST EN 14325:2018+A1:2024 01-julij-2024 Varovalne obleke pred kemikalijami - Preskusne metode in zahteve za razvrščanje materialov za izdelavo varovalnih oblek, šivanje, spajanje in sestavljanje (vključno z dopolnilom A1) Protective clothing against chemicals - Test methods and performance classification of chemical protective clothing materials, seams, joins and assemblages Schutzkleidung gegen Chemikalien - Prüfverfahren und Leistungseinstufung für Materialien, Nähte, Verbindungen und Verbünde Habillement de protection contre les produits chimiques - Méthodes d'essai et classification de performance des matériaux, coutures, jonctions et assemblages des vêtements de protection chimique https://Ta slovenski standard je istoveten z: 121 EN 14325:2018+A1:2024 15/sist-en-14325-2018a1-2024 ICS: 13.340.10 Varovalna obleka Protective clothing SIST EN 14325:2018+A1:2024 en,fr,de # iTeh Standards (https://standards.iteh.ai) Document Preview SIST EN 14325:2018+A1:2024 https://standards.iteh.ai/catalog/standards/sist/bf81b12f-33fa-4a15-88e1-9e9661648705/sist-en-14325-2018a1-2024 # EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 14325:2018+A1 May 2024 ICS 13.340.10 Supersedes EN 14325:2018 ### **English Version** # Protective clothing against chemicals - Test methods and performance classification of chemical protective clothing materials, seams, joins and assemblages Habillement de protection contre les produits chimiques - Méthodes d'essai et classification de performance des matériaux, coutures, jonctions et assemblages des vêtements de protection chimique Schutzkleidung gegen Chemikalien - Prüfverfahren und Leistungseinstufung für Materialien, Nähte, Verbindungen und Verbünde This European Standard was approved by CEN on 16 October 2017 and includes Amendment approved by CEN on 8 April 2024. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom. #### SIST EN 14325:2018+A1:2024 https://standards.iteh.ai/catalog/standards/sist/bf81b12f-33fa-4a15-88e1-9e9661648705/sist-en-14325-2018a1-202 EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels | Contents | | Page | | |--------------------|--|------|--| | European foreword4 | | | | | 1 | Scope | 5 | | | 2 | Normative references | 5 | | | 3 | Terms and definitions | 6 | | | 4 | Performance classification of materials | | | | 4
4.1 | Determination of property value for performance classification | | | | 4.2 | Pre-treatment | | | | 4.2.1 | Pre-treatment by cleaning and disinfection | | | | 4.2.2 | Pre-treatment by abrasion | | | | 4.2.3 | Pre-treatment by flexing | | | | 4.3 | Conditioning | | | | 4.4 | Abrasion resistance | | | | 4.4.1 | General | 8 | | | 4.4.2 | Determination of the highest number of abrasion rubs which does not cause damage | | | | | to the material and which shall be used for the performance classification | 9 | | | 4.5 | Compression-folding (Schildknecht) flex cracking resistance | 11 | | | 4.5.1 | General | 11 | | | 4.5.2 | Determination of the highest number of flexing cycles which does not cause damage | | | | | to the material and which shall be used for the performance classification | | | | 4.6 | Compression-folding (Schildknecht) flex cracking resistance at -30 °C | | | | 4.7 | Trapezoidal tear resistance | | | | 4.8 | Bursting resistance - deleted requirement | | | | 4.9 | Tensile strength | | | | 4.10 | Puncture resistance | | | | 4.11 | Resistance to permeation by chemicals | 15 | | | | General eh ai/oatalog/standards/sist/hf81h12f-33fa-4a15-88e1-9e9661648705/sist-en-14 | | | | | Classification of permeation resistance by breakthrough time | | | | 4.11.3
4.12 | Classification of permeation resistance by cumulative permeation time | | | | 4.12
4.13 | Repellency to liquidsResistance to penetration by liquids | | | | 4.13
4.14 | Resistance to jenetration by inquius | | | | 4.14 | Resistance to flame | | | | | | | | | 5 | Performance requirements for seams, joins and assemblages | | | | 5.1 | Determination of property value for rating and classification | | | | 5.2 | Pre-conditioning | | | | 5.3 | Conditioning | | | | 5.4 | Resistance to liquids | | | | 5.4.1 | General | | | | 5.4.2 | Resistance to penetration | | | | 5.4.3 | Resistance to permeation | | | | 5.5 | Seam strength | | | | 5.6
5.6.1 | Pull strength of joins and assemblages | | | | 5.6.1
5.6.2 | GeneralBoots and Gloves (excluding Booties) | 20 | | | 5.6.3 | Body Harness or Belts | | | | 5.0.5 | Doug Hat Hess Ut Detts | 41 | | | 5.6.4 | Lifelines | | |------------|---|----| | 5.6.5 | Exhalation Valves | 21 | | 6 | Test report | 22 | | 7 | Instructions for use | 22 | | Annex | A (normative) Abrasive paper | 23 | | A.1 | Quality of materials | 23 | | Annex | B (normative) Assessment, evaluation and determination of the property values for rating and for performance classification | 24 | | B.1 | Expression of results | 24 | | B.2 | Outlying data | 24 | | B.3 | Uncertainty of measurement | 25 | | B.4 | Classification of results | 25 | | Annex | C (normative) Use of time to cumulative mass for reporting material permeation resistance | 26 | | C.1 | Introduction | 26 | | C.2 | General | 26 | | C.3 | Basis for classification system | 27 | | C.4 | Alternative cumulative permeated mass | 27 | | C.5 | Conversion from permeation breakthrough time classification to classification by time to cumulative permeated mass | 27 | | C.6 | Cumulative permeated mass values as function of toxicity | 28 | | Annex | D (normative) Specification for pressure pot and leak-tightness of equipment | 30 | | D.1 | Equipment specification | | | D.2 | Volume of pressure pot and apparatus | 32 | | D.2.1 | s itch ai/catalog/standards/sist/bix1b12f-33fa-4a15-88e1-9e9661648705/sist-en-14325-201
For flexcracking specimens | 32 | | D.2.2 | For abrasion specimens | 32 | | D.3 | Leak tightness test | 32 | | Biblio | graphy | 33 | ### **European foreword** This document (EN 14325:2018+A1:2024) has been prepared by Technical Committee CEN/TC 162 "Protective clothing including hand and arm protection and lifejackets", the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by November 2024, and conflicting national standards shall be withdrawn at the latest by November 2024. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN not be held responsible for identifying any or all such patent rights. This document includes Amendment 1 approved by CEN on 8 April 2024. This document supersedes (A) EN 14325:2018 (A). The start and finish of text introduced or altered by amendment is indicated in the text by tags $\boxed{\mathbb{A}}$ A_1 deleted sentence A_1 According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. ### **Document Preview** SIST EN 14325:2018+A1:2024 https://standards.iteh.ai/catalog/standards/sist/bf81b12f-33fa-4a15-88e1-9e9661648705/sist-en-14325-2018a1-202 ### 1 Scope This European Standard specifies the performance classification and test methods for materials used in chemical protective clothing, including gloves and footwear. The gloves and boots should have the same chemical protective barrier requirements as the fabric when an integral part of the clothing. This is a reference standard to which chemical protective clothing performance standards may refer in whole or in part, but this standard is not exhaustive in the sense that product standards may well require testing according to test method standards which are not included in this standard. While these performance levels are intended to relate to the usage to which the chemical protective clothing is to be put, it is essential that the chemical protective clothing manufacturer or supplier indicate the intended use of the protective clothing and that the user (specifier) carries out a risk assessment in order to establish the correct performance level for the intended task. ### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 863:1995, Protective clothing - Mechanical properties - Test method: Puncture resistance EN 13274-4:2001, Respiratory protective devices — Methods of test — Part 4: Flame tests A) EN ISO 811:2018, Textiles - Determination of resistance to water penetration - Hydrostatic pressure test (ISO 811:2018) EN ISO 139:2005, Textiles - Standard atmospheres for conditioning and testing (ISO 139:2005) EN ISO 6530:2005, Protective clothing - Protection against liquid chemicals - Test method for resistance of materials to penetration by liquids (ISO 6530:2005) EN ISO 7854:1997, Rubber- or plastics-coated fabrics - Determination of resistance to damage by flexing (ISO 7854:1995) SIST EN 14325:2018+A1:2024 EN ISO 9073-4:2021, Nonwovens - Test methods - Part 4: Determination of tear resistance by the trapezoid procedure (ISO 9073-4:2021) [A] CEN ISO/TR 11610:2004, Protective clothing — Vocabulary (ISO/TR 11610:2004) EN ISO 12947-2:2016, Textiles - Determination of the abrasion resistance of fabrics by the Martindale method - Part 2: Determination of specimen breakdown (ISO 12947-2:2016) EN ISO 13934-1:2013, Textiles - Tensile properties of fabrics - Part 1: Determination of maximum force and elongation at maximum force using the strip method (ISO 13934-1:2013) EN ISO 13935-2:2014, Textiles - Seam tensile properties of fabrics and made-up textile articles - Part 2: Determination of maximum force to seam rupture using the grab method (ISO 13935-2:2014) ISO 6529:2013, Protective clothing — Protection against chemicals — Determination of resistance of protective clothing materials to permeation by liquids and gases ### 3 Terms and definitions For the purposes of this document, the terms and definitions given in CEN ISO/TR 11610 and the following apply. #### 3.1 ### abrasion rub one revolution of the outer drives of the Martindale abrasion tester [SOURCE: EN ISO 12947-1:1998] ### 3.2 ### abrasion cycle completion of all the translational abrasion movements tracing a Lissajous figure comprising 16 rubs, i.e. 16 revolutions of the two outer drives and 15 revolutions of the inner drive of the Martindale abrasion tester [SOURCE: EN ISO 12947-1:1998] ### 3.3 #### material one or several substances, in form of flexible planar structure, of which an item of clothing is made, excluding hardware and labels ### 3.3.1 ### single layer material material consisting of only one layer ### 3.3.2 (https://standards.iteh.ai ### multilayer material material consisting of several layers, which may be either permanently bonded together or intimately combined prior to the garment manufacturing stage, or which can be separated without any damage to each individual layer Note 1 to entry: By "permanently bonded together" is meant for example by coating, laminating, gluing. By "1841-2024" intimately combined" is meant for example by weaving, quilting. ### 3.3.3 ### multilayer material consisting of separate layers multilayer material, where individual layers that are neither permanently bonded together nor intimately combined, can be separated without any damage to the individual layers #### 3.4 ### specimen breakdown in abrasion resistance or flex cracking resistance testing, the visually observed deterioration in a specimen after exposure to a specified number of abrasion rubs or cycles of flexing #### **EXAMPLE** - In woven fabrics, when two separate threads are completely broken; - in knitted fabrics, when one thread is broken down; - in pile fabrics, when the pile is fully worn off; - in nonwovens, when the first hole resulting from the wear is of a diameter at least equal to 0,5 mm; - in coated material, when coating surface has the first hole resulting from the wear of a diameter at least equal to 0,5 mm. Note 1 to entry: The hole does not have to be through all materials for it to be a specimen breakdown. [SOURCE: EN ISO 12947-2:2016] ### 4 Performance classification of materials ### 4.1 Determination of property value for performance classification A number of performance classification levels are identified for the various properties of materials to be found in this standard. The value of each property defined in 4.4 to 4.15 and which shall be used for performance classification, shall be determined in accordance with Annex B (A) including the calculation of uncertainty of measurement for all the results. If not specified otherwise within 4.4, 4.5, 4.6, 4.7, 4.9 or within the specific test method itself, a material with different behaviour in the length and cross directions, shall be tested for its performance in both directions. The performance classification shall be based on the results obtained for the direction 2024 resulting in the lower performance classification when evaluated according to $\boxed{\mathbb{A}}$ Annex B $\boxed{\mathbb{A}}$. For a material with different surface characteristics, the fabric side that will appear on the outside of the apparel shall be tested for all test methods that are linked to surface performance (i.e. 4.4, 4.5, 4.6, 4.8, 4.11, 4.12, 4.13, 4.14, 4.15,) and the performance classification shall be based on the results for this side. If the chemical protective clothing consists of multiple layers of materials, with or without separable layers, all layers shall be tested together with the chemical protective clothing outer surface being tested for those properties which are linked to surface performance. For materials, which require pre-treatment, the performance classification shall be based on the lowest performance classification obtained on either testing new (not pre-treated) and/or pre-treated materials based on evidence. The performance classification tests shall be performed on the worst case. If insufficient evidence is available to determine whether the test shall be performed as new or pre-treated, the test shall be performed in both conditions. ### 4.2 Pre-treatment ### 4.2.1 Pre-treatment by cleaning and disinfection Before each test, all chemical protective clothing material samples, with the exception of limited-use chemical protective clothing, shall undergo pre-treatment by cleaning and disinfection as applicable. If the manufacturer's instructions indicate that cleaning or disinfection is not allowed, i.e. limited use garments, then testing shall be carried out on new material. Where applicable according to manufacturer's instruction, the cleaning and disinfection shall be in line with the manufacturer's instructions, on the basis of standardized procedures. If the number of cleaning and disinfection cycles is not specified, the tests shall be carried out after 5 cycles of pre-treatment, each consisting of one wash cycle, one dry cycle and one disinfection cycle carried out in the sequence as indicated by the manufacturer's instructions. This shall be reflected in the information supplied by the manufacturer. If the garment can be washed or alternatively dry-cleaned it shall only be washed, dried and disinfected. If only dry-cleaning is allowed, the garment shall only be dry-cleaned and disinfected in accordance with the manufacturer's instructions. ### 4.2.2 Pre-treatment by abrasion Specimens, which have been pre-treated according to 4.2.1, may also be pre-treated by one of the numbers of abrasion rubs given in Table 1 in accordance with the method described in 4.4.1 and as specified in the product standard or as defined by the manufacturer, whichever is the larger, prior to testing according to 4.11. ### 4.2.3 Pre-treatment by flexing Specimens, which have been pre-treated according to 4.2.1, may also be pre-treated by one of the numbers of flexing cycles given in Table 2 in accordance with the method described in 4.5.1 and as specified in the product standard or as defined by the manufacturer, whichever is the larger, prior to testing according to 4.11. ### 4.3 Conditioning Unless otherwise indicated in the product standard, all specimens shall be conditioned by storage at (20 ± 2) °C and (65 ± 5) % relative humidity in accordance with EN ISO 139 for at least 24 h. If 0.1841 ± 2.024 applicable, the tests shall be started within 5 min of removing the specimen from the conditioning atmosphere, unless otherwise indicated in the test method standard. Conditioning may be omitted or aligned with the conditions of 4.3 if it can be shown that test results are not affected by the foreseeable changes of temperature and relative humidity. ### 4.4 Abrasion resistance #### 4.4.1 General A set of four test specimens of a material sample, where each specimen shall consist of all layers, shall be tested in accordance with EN ISO 12947-2 in the inverted mode, i.e. a test specimen of at least 140 mm diameter placed on the abradant table and an abradant of at least 30 mm diameter mounted in the test piece holder, using abrasive paper specified in A Annex A and with an applied downward pressure of 9 kPa. The abrasion resistance of the chemical protective clothing material shall be classified according to the levels of performance given in Table 1, using the highest number of abrasion rubs, determined according to 4.4.2, which do not cause damage to the material. ## 4.4.2 Determination of the highest number of abrasion rubs which does not cause damage to the material and which shall be used for the performance classification ### 4.4.2.1 General To determine the level of performance, the leak tightness of each of the four test specimens of a material sample shall be determined after a number of abrasion rubs. An additional sample will be used to determine the leak tightness prior abrasion. - There are three methods of leak tightness assessment, the pressure pot, the hydrostatic head and visual inspection. - The pressure pot shall be used for materials holding the pressure according to 4.4.2.2. - The hydrostatic head shall be used for air permeable materials which cannot hold the pressure according to 4.4.2.2, but can be tested according to 4.4.2.3. - NOTE 1 When evidence is presented that air permeable materials cannot hold the pressure according to 4.4.2.2, this does not need to be re-confirmed. - Visual inspection is permitted when the material does not permit either of the above quantitative assessment methods in this subclause to be performed. In this case, this shall be reported in the test report and also in the Instructions for Use indicating that the visual inspection is qualitative and does not provide evidence of liquid tightness after abrasion. If this assessment is performed through visual inspection, the maximum classification that can be claimed is a Class 3. NOTE 2 When evidence is presented that neither of the above two quantitative assessment methods in this subclause can be performed due to the nature of the material, this does not need to be re-confirmed. (https://standards.iteh.ai) Document Preview SIST EN 14325:2018+A1:2024 https://standards.iteh.ai/catalog/standards/sist/bf81b12f-33fa-4a15-88e1-9e9661648705/sist-en-14325-2018a1-202